
Lunar Navigation Performance using the Deep Space Network
and Alternate Solutions to Support Precision Landing

Bradley C. Collicott∗ and David C. Woffinden†

NASA Johnson Space Center, Houston, TX, 77573

As human exploration once again targets the surface of the Moon, questions continue
to emerge regarding the necessity of Earth-based tracking systems, such as the Deep Space
Network, for spacecraft navigation in support of lunar descent and landing. This paper will
derive an extensive Deep Space Network sensor model for use in linear covariance analysis and
demonstrate the resulting trajectory dispersions and navigation performance in comparison
with alternate solutions, such as terrain relative navigation. An in-depth trade study with
considerations for various trajectory profiles, time allocated to ground tracking, number of
active ground stations, and interaction with other sensors will be conducted to shed significant
insight into sensor suite requirements to ensure safe and precise landing on the Moon.

I. Introduction
The use of radiometric tracking in spacecraft navigation has a rich history that antedates even the first human

landing on the Moon, beginning with the establishment of the Deep Space Network (DSN) in 1958 to communicate
with the Explorer 1 spacecraft [1]. As human presence in space expanded, so did the DSN; with locations in California,
Madrid, and Austrailia, the network is capable of providing nearly unfettered coverage to spacecraft beyond low-Earth
orbit (LEO). However, increased space mission volume has created concerns about future expectations of DSN usage
for spacecraft navigation, including support for lunar landings [2]. As the DSN continues accepting new tracking
responsibilities in addition to supporting legacy projects (some that are significantly out-living expectations), alternative
solutions are being explored to ensure that an accurate lunar landing is not entirely dependent on Earth-based tracking
systems.
The Safe and Precise Landing - Integrated Capabilities Evolution (SPLICE) project, a cross-disciplinary effort

within NASA to develop precision landing and hazard avoidance technologies, is aiding in addressing this topic by
investigating game-changing navigation and sensing techniques [3]. These efforts include developing simulation and
analysis tools for evaluating candidate entry, descent, and landing (EDL) trajectories to near-term destinations such
as the Moon and Mars [4]. In support of this mission, a novel sensor model for simulating Earth-based radiometric
tracking measurements from DSN or DSN-like sites has been developed for use in linear covariance analysis – a rapid,
early-stage tool for assessing guidance, navigation, and control (GN&C) system performance.

II. Linear Covariance Analysis Overview
Linear covariance methods for use in spacecraft and EDL applications have been detailed and demonstrated in [5–8]

and are not considered a core finding or contribution of this effort, but a synopsis of these techniques will be presented
for completeness. Assessing the overall performance of a GN&C system is a complex endeavor, often requiring the
use of hundreds or thousands of Monte Carlo simulation runs to determine the desired statistical parameters. Broadly,
linear covariance is an alternative or complementary approach to Monte Carlo analysis that produces similar statistical
information for a closed-loop GN&C system in a single simulation run.

A. GN&C Performance Metrics
Before outlining the mathematical framework for linear covariance analysis, key performance metrics for evaluating

a GN&C system must be defined. One of the primary concerns of this analysis lies in determining how well the
vehicle can estimate its state and follow a desired trajectory. Figure 1 depicts the relationship between the nominal x̄,
navigation/navigated x̂, true/actual x, and design 𝑥 states.
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Fig. 1 GN&C Analysis Performance Metrics.

Between these states, the true dispersion 𝛿x, which is also called the trajectory or environment dispersion, is defined as
the difference between the true and nominal states. Similarly, the navigation dispersion 𝛿x̂ is the difference between the
navigation and nominal states, and these dispersions also have associated covariance matrices, D and D̂, respectively.

𝛿x Δ
= x − x̄ D = 𝐸

[
𝛿x 𝛿xT

]
(1)

𝛿x̂ Δ
= x̂ − x̄ D̂ = 𝐸

[
𝛿x̂ 𝛿x̂T

]
(2)

The covariance of the true dispersion characterizes the system’s ability to follow a prescribed reference trajectory, and
the covariance of the navigation dispersion quantifies how well the onboard system thinks that it can track the nominal
trajectory.
In addition to dispersions defined relative to the nominal state, navigation 𝛿e and onboard 𝛿ê error may be computed

relative to the navigation state.

𝛿e Δ
= x − x̂ P = 𝐸

[
𝛿e 𝛿eT

]
(3)

𝛿ê Δ
= 𝑥 − x̂ P̂ = 𝐸

[
𝛿ê 𝛿êT

]
(4)

Since the navigation error represents the difference between the actual state and the navigation state, the covariance of
the navigation error P represents the certainty with which the system estimates the true state. Similarly, the onboard
error is defined as the difference between the design state and the navigation state, and its covariance P̂ describes the
accuracy with which the onboard system predicts that it can estimate the design state assumed in the filter development.
Note that the navigation error and onboard error are the same if the design and true states are assumed to be equal.

B. Computing Performance Metrics using Linear Covariance
The nominal reference trajectory x̄ is generated through the propagation of non-linear system dynamic models and

GN&C algorithms, as illustrated in Fig. 2. Using this trajectory, the onboard covariance matrix P̂ and an augmented state
covariance C are propagated, updated, and corrected. The augmented state covariance is comprised of a combination of
the true dispersions 𝛿x and navigation dispersions 𝛿x̂:

C = 𝐸
[
𝛿X 𝛿XT

]
(5)

where 𝛿XT =
[
𝛿xT 𝛿x̂T

]
(6)

For an n-dimensional true state vector and an n̂-dimensional navigation state vector, the mapping matrices shown in
Eq. (7) are applied to the augmented covariance, yielding the environment dispersion D, navigation dispersion D̂, and
navigation error P covariance matrices.

D =
[
I𝑛×𝑛 0𝑛×�̂�

]
C
[
I𝑛×𝑛 0𝑛×�̂�

]T
D̂ =

[
0�̂�×𝑛 I�̂�×�̂�

]
C
[
0�̂�×𝑛 I�̂�×�̂�

]T (7)

P =
[
I�̂�×𝑛 − I�̂�×�̂�

]
C
[
I�̂�×𝑛 − I�̂�×�̂�

]T
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Thus, performance metrics are calculated which may then be compared to the statistical results of other methods, such
as the Monte Carlo analysis, to analyze a GN&C system and relevant mission trade studies.

Fig. 2 Linear Covariance GN&C Analysis Flow Diagram

C. Sensor Modeling in a Linear Covariance Analysis
Details on implementing a discrete sensor model into the linear covariance analysis are presented here. Considering

that sensor measurements are not actually computed using this analysis technique, sensor performance must be described
in a way that contributes to updating the onboard and augmented covariance matrices. Consider a sensor measurement
vector z and actual spacecraft state vector x, which are related by the non-linear function h:

z = h(x, 𝑡) + 𝝐 (8)

The function h represents the mathematical relationship between a noise-free observation and the true state. In this way,
the term 𝝐 accounts for error in the measurement, generally in the form of Gaussian white noise. This formulation may
be linearized about reference state x̄ to produce the following expression as a function of the reference state and time:

𝛿z = H(x, 𝑡) 𝛿x + 𝝐 (9)
where 𝛿z = z − z̄ , 𝛿x = x − x̄ (10)

It can be seen that 𝛿z represents the deviation of actual measurements z from predicted measurements z̄ that are based
on the reference state. Similarly, 𝛿x is a state deviation vector that quantifies the difference between the actual x and
nominal x̄ states. The value of interest from this derivation is the H-matrix, which represents the partial derivatives of
the modeled observations (evaluated at the reference state x̄) with respect to the state vector x and is required to update
both the onboard and augmented covariance matrices.

H(x , 𝑡) =
𝜕h(x, 𝑡)

𝜕x

���
x= x̄

(11)

In summary, measurements are not computed in a linear covariance analysis; rather, the observations must be modeled
in terms of state variables to compute the JacobianH-matrix at the time of each observation. Additionally, measurement
noise and biases may be specified, as will be shown in the detailed derivation of the DSN sensor model. These sensors
properties are used to update the onboard and augmented covariance matrices, allowing for the navigation performance
and trajectory dispersion statistics to be computed.

III. Deep Space Network Measurement Model
This paper describes several methods for simulating radiometric tracking measurements in a linear covariance

analysis. First, the mathematical model for range and range rate measurements is derived and implemented as an
onboard sensor. Then, the modeling approach shifts to developing a batch processor, using weighted least squares and
square root information filter formulations, to compute the state error using information from range and range rate
measurements. The latter technique better approximates the operational usage of radiometric tracking measurements,
in which an entire batch of data is processed before information is uplinked to the spacecraft. However, the onboard
sensor approach still holds merit in it’s simplicity and uniformity with other sensors used in covariance analysis. In both
instances, the same model for measurements from Earth-based tracking stations is used. This model is heavily derived
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from literature published by the NASA Jet Propulsion Laboratory (JPL), and information regarding general radiometric
tracking, DSN measurement accuracy, sources of measurement error, and a wealth of technical details was retrieved
from [9–13].

A. Math Model
The DSN sensor measurements depend on the spacecraft states of position rcg, velocity vcg, attitude, and attitude rate

ωcg, as well as external parameters such as ground station location rgs and measurement biases 𝑏𝜌 and 𝑏 ¤𝜌. Spacecraft
pointing error is accounted for using the estimated small angle rotation θcg, which is defined as the variation between
the true body attitude and nominal body attitude. Therefore, when considering a tracking scenario with one active
ground station, the portion of the state vector influencing the sensor measurement x of dimension 20 × 1 can be written
as follows:

xT =

[
rTcg vTcg θTcg ωT

cg rTa rTgs 𝑏𝜌 𝑏 ¤𝜌
]

(12)

The spacecraft antenna arm ra is included in the state vector due to it’s impact on range and range rate measurements, as
will be shown through further derivation.
DSN measurements primarily consist of slant range 𝜌, acquired by measuring the round-trip-light-time for a signal

to travel from the ground station to the spacecraft, and range rate ¤𝜌, which is computed by observing the doppler shift in
incoming waves. These physical measurements must be expressed in terms of spacecraft state variables as depicted in
Fig. 3, where a contextual diagram for computing the slant range to a spacecraft is shown.

Fig. 3 Range Tracking Definition Sketch

The slant range may be defined as the magnitude of the line-of-sight relative position vector rrel, which is calculated
as a combination of the spacecraft center-of-gravity rcg, spacecraft antenna ra, and ground station rgs position vectors.
Conventionally, all quantities should be computed in the Earth-Centered Inertial (ECI) reference frame.

𝜌 =
�� rirel �� =

�� ricg + ria − rigs
�� (13)

However, several of the quantities that comprise slant range are not natively known in the inertial frame, namely rgs and
ra, which are known in the Earth-Centered, Earth-Fixed (ECEF) and spacecraft body frames, respectively. Therefore,
these components in the slant range formulation are transformed to the inertial reference frame.

ria = Tib rba , rigs = Tip rpgs (14)

Determining an expression for the ECEF-to-Inertial transformation matrix Tip requires knowledge of the relative
orientation of planetary reference frames, whereas the nominal Body-to-Inertial transformation matrix Tib is obtained
directly from the spacecraft attitude quaternion qib. In an effort to account for attitude dynamics, the formulation for Tib
includes θbcg, which represents the spacecraft’s deviation from the nominal attitude state. Note that the nominal value
for θbcg is 03×1 such that the transformation matrix is unaffected when evaluated at the reference state.

Tib = Tib̄ Tb̄b = Tib̄
(
I +

[
θbcg×

] )
(15)
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The term
[
θbcg ×

]
represents the 3× 3 cross-product-equivalent matrix of the 3× 1 vector θbcg. By substituting Eqs. (14)

and (15) into Eq. (13), the final expression for 𝜌 may be written.

𝜌 =
�� ricg + Tib̄

(
I +

[
θbcg×

] )
rba − Tip rpgs

�� (16)

An expression for range rate ¤𝜌 is obtained by differentiating Eq. (13) with respect to time, resulting in the following:

¤𝜌 =

[
virel

]T [ rirel
]�� rirel �� =

[
vicg + via − vigs

]T [ ricg + ria − rigs
]�� ricg + ria − rigs

�� (17)

Similar to the antenna and ground station terms in the slant range equation, antenna velocity va and ground station
velocity vgs may be expressed in terms of the body and planet-fixed reference frames, respectively. Additionally, the
terms include the rotational velocity of the spacecraftωb

cg and Earthω
p
e respectively. Assuming that the linear velocities

of the antenna and ground station are zero in their native coordinate frames (i.e. rigid body motion), the rotation velocity
component is the only contributor to their velocity.

via = ωi
cg × ria = Tib (ω

b
cg × rba) , vigs = ωi

e × rigs = Tip (ω
p
e × rpgs) (18)

By substituting Eqs. (14), (15), and (18) into Eq. (17), the final expression for ¤𝜌 is obtained.

¤𝜌 =

[
vicg + Tib̄

(
I +

[
θbcg×

] )
(ωb

cg × rba) − Tip (ω
p
e × rpgs)

]T [ ricg + Tib̄
(
I +

[
θbcg×

] )
rba − Tip rpgs

]�� ricg + Tib̄
(
I +

[
θbcg×

] )
rba − Tip rpgs

�� (19)

B. Implementation in Linear Covariance Analysis
Recalling Eq. (9), the previous section provides h(x , 𝑡), the relationship between perfect observations and sensor

state; therefore, the observation vector z is given as:

z = h(x , 𝑡) =

[
𝜌

¤𝜌

]
+ b + 𝝐 =

[
�̃�

¤̃𝜌

]
(20)

where the bias term b represents the measurement uncertainty in addition to the measurement noise 𝝐 . As shown in
Eq. (11), H is the quantity of interest, so the observation vector z must be differentiated with respect to the state vector
and evaluated at the nominal state (as indicated by the notation x = x̄). The result of this operation is shown in Appendix
A.

H(x𝑖 , 𝑡𝑖) =
𝜕h(x𝑖 , 𝑡𝑖)

𝜕x𝑖

���
x𝑖 = x̄𝑖

=


𝜕�̃�

𝜕ricg
𝜕�̃�

𝜕vicg
𝜕�̃�

𝜕θicg

𝜕�̃�

𝜕ωi
cg

𝜕�̃�

𝜕rba
𝜕�̃�

𝜕rpgs
𝜕�̃�

𝜕𝑏𝜌

𝜕�̃�

𝜕𝑏 ¤𝜌

𝜕 ¤̃𝜌
𝜕ricg

𝜕 ¤̃𝜌
𝜕vicg

𝜕 ¤̃𝜌
𝜕θicg

𝜕 ¤̃𝜌
𝜕ωi

cg

𝜕 ¤̃𝜌
𝜕rba

𝜕 ¤̃𝜌
𝜕rpgs

𝜕 ¤̃𝜌
𝜕𝑏𝜌

𝜕 ¤̃𝜌
𝜕𝑏 ¤𝜌

x= x̄

(21)

The H-matrix is computed at each time step as long as there is an unbroken line-of-sight between the ground station and
spacecraft antenna. Figure 4 illustrates parameters used in determining the visibility from a ground station to spacecraft
at arbitrary positions.
The angle θ between the ground station position vector rgs and spacecraft contact point rsc determines the line-of-sight

for radio communications. If θ is larger than the 90◦, then the ground station will be below the horizon and unable
to observe the spacecraft. However, ground stations are limited to a minimum elevation angle at which measurement
quality significantly degrades or the physical structure of the antenna does not support further declination. Therefore,
for a spacecraft to be in view of a DSN station, the aforementioned angle θ must be less than a specified θmax. It is
convenient to use the cosine of the angle θ to check for line-of-sight, which is easily computed using the inner product
between vectors.

risc = ricg + ria , cos θ = rigs · risc (22)
DSN is in view when: cos θ ≥ cos θmax (23)
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Fig. 4 Diagram for Checking Earth Obstruction of Spacecraft

It is also pertinent to check for line-of-sight obstruction by the Moon during lunar missions. Figure 5 provides
definitions for variables used in determining line-of-sight contact for a spacecraft in proximity of the Moon. Using the
definition for rsc given in Eq. (23) and knowing the position of the Moon with respect to the ground station rm/gs, the
position of the spacecraft with respect to the Moon rsc/m may be computed. Therefore, the measurement validity may be
determined geometrically.

risc/m = risc − rim/gs , rsc/m =
�� risc/m �� (24)

therefore: b = risc/m ·
rim/gs
rm/gs

and h =
√︃
r2sc/m − b2 (25)

line-of-sight is obstructed when: b ≥ 0 and h ≤ rm (26)

The triangle’s base, b, is computed as the vector projection of rsc/m onto the unit vector r̂m/gs, and the height, h, is found
from Pythagorean’s Theorem. Therefore, when the spacecraft is beyond the Moon (b ≥ 0) and has less than one lunar
radius of separation (h ≤ rm), the ground station can not track the spacecraft, and the measurement is invalid. The
conditions for measurement validity from Eqs. (23) and (26) must be satisfied to obtain a measurement.

Fig. 5 Diagram for Checking Lunar Eclipse of Spacecraft

If the measurement is deemed valid at time 𝑡𝑖 , then the matrix H𝑖 is computed for the nominal state x̄𝑖 and used
in computing new onboard and augmented covariances. There are two ways to implement measurements from DSN
ground stations into a linear covariance simulation: as a range and range rate sensor that provides information for
sequential processing or as a state estimate with a corresponding covariance that results from a batch processor. Both
methods will be discussed below.

1. Onboard Sequential Processing
A simplified implementation of the DSN model in a linear covariance framework utilizes sequential processing

of range 𝜌 and range rate ¤𝜌 measurement information as if directly available onboard the spacecraft. The H-matrix
for a DSN measurement is calculated at the time epoch of each valid measurement and used to update the augmented
covariance C and onboard covariance P̂. In addition to measurement partials, the sequential implementation also
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requires assembly of the navigation and onboard filter measurement noise covariance R for use in determining the
covariance of the measurement residual Rmeas. The sequential implementation utilizes several bias and noise terms;
these values are specified in Table 1.

Table 1 Measurement Model Sources of Uncertainty (3σ)

Variable of Uncertainty Bias Term Noise Term
Range Measurement (m) 𝜌 3.0 3.0

Range Rate Measurement (mm/s) ¤𝜌 0.03 0.03
Ground Station Position (cm) rpgs 5 –

Spacecraft Antenna Position (cm) rba 30 –

The sequential implementation of a radiometric tracking sensor greatly simplifies the operational concept of such a
model. Additionally, implementation into linear covariance only requires the definition of measurement error terms and
partial derivatives to begin analyzing GN&C system performance. In this implementation, measurements as processed
in a Kalman filter as they become available. This approach replicates the navigation performance that would result if
each DSN measurement was processed in the onboard spacecraft filter, rather than on the ground. The updated onboard
covariance is computed as a function of the Kalman gain K, measurement partials H, and measurement noise R:

P̂𝑖+1 = A P̂𝑖 AT + K R KT (27)

where K = P̂𝑖 HT𝑖 R−1 and A = I − K H𝑖 (28)

Similarly, the augmented covariance matrix C may be computed using partials of the true measurement with respect to
the true state H and estimated measurement with respect to the estimated state Ĥ:

C𝑖+1 = H𝑎𝑢𝑔 C𝑖 HT𝑎𝑢𝑔 + K R KT (29)

where H𝑎𝑢𝑔 =

[
I 0

KH I − KĤ

]
(30)

2. External Batch Processing - Batch Least Squares
Sequential filtering provides a relatively simple, agile implementation of spacecraft radiometric tracking measure-

ments; however, this approach does not reproduce the effect of processing measurements on the ground rather than
onboard the spacecraft. In this implementation, a simple Batch Least Squares algorithm is used to process a batch
of measurements and update the onboard covariance. The use of an external filter in processing measurements and
informing navigation performance in a linear covariance analysis is considered a key contribution of this effort. The
batch processor used in this DSN model is a Weighted Least Squares formulation similar to those found in [14] and [15].
In essence, the batch processor used specifically for DSN measurements is a secondary filter that runs in the background
and provides information to the onboard filter once a tracking pass is complete.
Recall that the relationship between measurement observations z and spacecraft states x is linearized about some

reference trajectory x̄ such that the relationship between measurement deviation 𝛿z and state deviation 𝛿xmay be written
as:

𝛿z = H 𝛿x + 𝝐 (31)
Therefore, the measurement residual 𝝐 represents the parameter to minimize in the Batch Least Squares formulation.
The weighting matrixW is introduced in this definition and will be defined in later steps.

𝝐 = 𝛿z − H 𝛿x (32)

J =
1
2
𝝐TW 𝝐 =

1
2
[
𝛿z − H 𝛿x

]TW
[
𝛿z − H 𝛿x

]
(33)

The least squares parameter J is minimized for the following conditions:

𝜕J
𝜕x = 0 and

𝜕2J
𝜕x2

> 0 (34)

such that: 𝛿x̃ = (HTW H)−1HTW 𝛿z (35)
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where 𝛿x̃ represents the best estimate of actual state deviation vector 𝛿x based on the least squares method. By taking
the weighting matrixW as the inverse of the measurement residual covariance R, the covariance of the state estimate
can be written for an unbiased estimate without a priori information.

P̃ = E
{ [

x̃ − E{ x̃ }
] [

x̃ − E{ x̃ }
]T }

= E
{ [

x̃ − x
] [

x̃ − x
]T }

= (HT R−1H)−1 (36)

The value of interest in this derivation is the covariance of the state estimate P̃ – once this covariance matrix is obtained
for a batch of data, the existing onboard covariance is updated with this new information to represent the certainty with
which the spacecraft knows its state. Consider a batch of an arbitrary number of observations to be used in estimating the
state of the spacecraft at the final observation time. To use information from previous measurements in estimating the
current state, the H-matrices must be made relevant to the time of interest through the use of state transition matrices Φ.

x𝑖+1 = Φ(𝑡𝑖+1, 𝑡𝑖) x𝑖 , Φ(𝑡𝑖+1, 𝑡𝑖) =
𝜕x𝑖+1
𝜕x𝑖

(37)

such that: H̃𝑖 = H(x𝑖 , 𝑡𝑖) Φ(𝑡𝑘 , 𝑡𝑖) , P𝑘 = Φ(𝑡𝑘 , 𝑡𝑖) P𝑖 Φ(𝑡𝑘 , 𝑡𝑖)T (38)

An H-matrix that has been advanced to the time of the batch update is denoted as H̃. The state transition matrix
Φ(𝑡𝑖 , 𝑡𝑖−1) from 𝑡𝑖−1 to 𝑡𝑖 is obtained by numerically integrating the expression in Eq. (39). In this application, the
ordinary differential equation in Eq. (39) is jointly integrated with the state vector using a fourth-order Runge-Kutta
scheme.

¤Φ(𝑡𝑖+1, 𝑡𝑖) = A(x𝑖 , 𝑡𝑖) Φ(𝑡𝑖+1, 𝑡𝑖) (39)
where ¤x𝑖 = A(x𝑖 , 𝑡𝑖) x𝑖 (40)

The spacecraft state vector x contains 𝑘 instances of epoch-specific spacecraft state vectors. The sensor state vector
has the dimension 𝑛 × 1 and is dependent on the number of ground stations such that 𝑛 = 17 + 3𝑛gs. Similarly, the
observation vector z contains two scalar measurements (range and range rate) per ground station at each time step such
that 𝑧 = 2𝑛gs, and it follows that the error terms are of compatible dimensions. The unbiased, perfect observations are
represented by Eqs. (16) and (19) evaluated at the reference state x̄. These equations were differentiated with respect to
the sensor state to obtain the H-matrix.

h(x, 𝑡) =

[
𝜌

¤𝜌

]
=



�� ricg + Tib̄
(
I +

[
θbcg×

] )
rba − Tip rpgs

��[
vicg + Tib̄

(
I +

[
θbcg×

] )
(ωb

cg × rba) − Tip (ω
p
e × rpgs)

]T [ ricg + Tib̄
(
I +

[
θbcg×

] )
rba − Tip rpgs

]�� ricg + Tib̄
(
I +

[
θbcg×

] )
rba − Tip rpgs

��


(41)

The Batch Least Squares is generally an iterative process that begins with a nominal trajectory x̄ and is carried out until
an adequate state estimate x̃𝑘 is obtained. However, measurements are not truly computed in a linear covariance analysis
and a state estimate is not obtained. Rather, this batch filter formulation only computes the covariance and cannot iterate.
For the batch of data, the covariance of the state estimate P̃𝑘 is computed with a priori covariance P−

𝑘 in addition to the
expression from Eq. (36).

P̃𝑘 =

( 𝑘∑︁
𝑖=0

H̃T𝑖 R−1
𝑖 H̃𝑖 + ( P−

𝑘 )
−1
)−1

(42)

Although a batch least squares processor may be sufficient for determining a state estimate in a real-world orbit
determination problem, this formulation does not incorporate stochastic processes such as process noise and therefore
lends itself to procucing overly optimistic covariance values. This combined with concerns of numerical stability
resulted in conversion to factorized filter formulations in deep space tracking applications [16]. The following section
details the implementation of a factorized filter that includes time updates to incorporate process noise and compute a
covariance that appropriately characterizes the statistics of orbit determination via radiometric tracking.
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3. External Batch Processing - Square Root Information Filter
The square-root information filter (SRIF) formulation of the least-squares method, which operates on the square

root factor of the inverse of the covariance matrix, is applied here to incorporate process noise and ensure numerical
stability of the solution. The SRIF formulation in [17] was adopted for this application. Again, this formulation was
adapted by linear covariance analysis by eschewing the state estimate and only computing the square-root factor S of the
information matrix at each measurement time.

P̃ = 𝚲−1 = S−1S–T (43)

The square-root matrix is obtained via Cholesky decomposition of the information matrix 𝚲. In the SRIF algorithm, the
measurement equation is normalized using the Cholesky factor of the measurement noise covariance R1/2, necessitating
normalization of the H-matrix in this application.

H = R−1/2H𝑜𝑟𝑖𝑔 (44)

To incorporate process noise, a new state transition equation is written in place of Eq. (37) that includes the state process
noise w and a process noise mapping matrix Γ(𝑡𝑖+1, 𝑡𝑖).

x𝑖+1 = Φ(𝑡𝑖+1, 𝑡𝑖)x𝑖 + Γ(𝑡𝑖+1, 𝑡𝑖)w𝑖 (45)

An approximation for the process noise mapping matrix Γ is obtained using the system input dynamics B and computing
the first-order of the Peno-Baker expansion for the state transition matrix Φ. The state vector x includes a generalized
constant variable 𝐶 to account for additional, unchanging states, and each matrix entry in the following derivation
represents a 3 × 3 block.

¤x = Ax + Bw, x =

[
rTcg vTcg θTcg ωT

cg 𝐶T
]T

, w =

[
wTvcg wTωcg

]T

A =



0 I 0 0 0
G 0 0 0 0
0 0

[
ωcg×

]
I 0

0 0 0
[
ω*
cg
]

0
0 0 0 0 0


B =



0 0
I 0
0 0
0 I
0 0


Φ(𝑡𝑖+1, 𝑡𝑖) ≈ I + AΔt =



I IΔt 0 0 0
GΔt I 0 0 0

0 0 I +
[
ωcg×

]
Δt I 0

0 0 0 I +
[
ω*
cg
]
Δt 0

0 0 0 0 I


for constant process noise, Γ(𝑡𝑖+1, 𝑡𝑖) ≈

∫ 𝑡𝑖+1

𝑡𝑖

Φ(𝑡𝑖+1, 𝜏)B(𝜏)d𝜏 =



IΔt22 0
IΔt 0
0 IΔt
0 IΔt +

[
ω*
cg
]
Δt2
2

0 0


(46)

The matrix G represents the gravity gradient acting on the spacecraft, and the notationω*
cg represents a function of

spacecraft attitude rateωcg and moment of inertia matrix Isc.[
ω*
cg
]
= I−1sc

[
(Iscωcg)×

]
− I−1sc

[
ωcg×

]
Isc (47)

For a process noise vector with 𝑞 elements, the 𝑞 × 𝑞 process noise error covariance Q can be obtained and factored into
its respective square-root information terms.

Q = S−1
𝑤 S–T𝑤 (48)

The Householder algorithm is used in carrying out both the time update and the measurement update, and this process is
denoted using a representative matrix T that produces an upper triangular matrix. This notation is exemplified using
arbitrary matrixM in Eq. (49)

T M = M̂ (49)

The SRIF algorithm, including process noise, is shown in Table 2 for a batch of 𝑘 measurements with a priori square-root
information matrix S−

𝑘 .
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Table 2 Square Root Information Filter Algorithm

for 𝑖 = 1, 2, . . . , 𝑘
Normalize H-matrix using measurement noise: H𝑖 = R−1/2

𝑖
H𝑖

Measurement update using 𝑛 Householder transformations: T̂𝑖

[
S−
𝑖

H𝑖

]
=

[
Ŝ𝑖

0

]
Time update from 𝑡𝑖 to 𝑡𝑖+1: S𝑖+1 = Ŝ𝑖Φ

−1 (𝑡𝑖+1, 𝑡𝑖)

Incorporate process noise using 𝑞 Householder transformations: T̄𝑖

[
S𝑤𝑖

0
−S𝑖+1Γ(𝑡𝑖+1, 𝑡𝑖) S𝑖+1

]
=

[
S−
𝑤𝑖+1 S−

𝑤𝑖+1𝑥𝑖+1

0 S−
𝑖+1

]
set 𝑖 = 𝑖 + 1

end for
compute covariance: P̃𝑘 = Ŝ−1

𝑘 Ŝ–T𝑘

There are two approaches to outputting the information from an external ground-based filter, such as the SRIF, to
the onboard filter in a linear covariance analysis. The upper-left 6 × 6 block of the state estimate covariance P̃𝑘 can be
output as the measurement error R accompanied by a 6 × 6 identity H-matrix for use in a measurement update to the
onboard covariance as shown in Eq. (27) and augmented covariance as in Eq. (29). In this way, the range and range
rate measurements are mapped directly to information on the spacecraft’s position and velocity for processing in the
onboard filter. Alternatively, the new state estimate may be used to replace the previous covariance by overwriting
the onboard filter state estimate and associated covariance. In this case, the covariance of the position and velocity
navigation error are reset to the values output by the SRIF filter. Recalling Eqn. (3), the navigation error is defined as
the difference bewteen the nominal state and navigation state. Combining this expression with Eqns. (1) and (2) shows
that the navigation error can also be expressed in terms of the true dispersion and navigation dispersions.

P̂+
= 𝐸

[
[𝛿e+] [𝛿e+]T

]
= P̃𝑘 (50)

𝛿e+ = 𝛿x− − 𝛿x̂+ → 𝛿x̂+ = 𝛿e+ − 𝛿x− (51)

By leaving the true dispersion 𝛿x unchanged, the new navigation dispersion 𝛿x̂+ may be computed and used in updating
the augmented covariance matrix. This reset process was derived and explored in depth in [18, 19].

C+ = 𝐸
[
[𝛿x−𝛿x̂+] [𝛿x−𝛿x̂+]T

]
(52)

A summary of options for integrating DSN measurement information into linear covariance analysis is shown in Fig. 6.

Fig. 6 DSN Measurement Processing Options
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IV. Alternative Methods
Despite the longstanding history of radiometric tracking in spacecraft navigation, alternate techniques are currently

being fielded to reduce the burden on Earth-based antenna networks and improve navigation precision for future missions.
This paper aims to provide a comparison of the TRN model outlined in [20] with the DSN model presented in the
previous section in order to shed light on the effectiveness of both systems as standalones and complements. This effort
investigates the use of a high-altitude optical camera for visual detection of surface features. Any subset of 1500 known
feature on the Moon can be included in the onboard database for use in analysis. The model includes constraints for
sunlight incidence angle, camera field of view, distance to the feature, and vehicle velocity. As a result, the performance
of this TRN system is heavily dependent on the trajectory profile and time epoch of the mission. This sensor provides
information to the onboard filter in the form of a bearing measurement to the visible feature. The sensor specifications
used in this analysis are shown alongside the TRN definition sketch in Fig. 7.

Fig. 7 Terrain Camera Sensor Definition Sketch and Specifications (3σ)

V. Lunar Descent and Landing Navigation Analysis
Analysis of near-term lunar surface missions are of primary importance to the SPLICE program. This analysis

utilizes three lunar trajectories that could serve as the holding orbit before descent and landing. Equatorial and polar
trajectories were selected for their candidacy in upcoming lunar missions, and a third maximum visibility orbit was
determined in which the line-of-sight from Earth-based ground stations would never be impeded by the moon. These
three trajectory profiles are shown in Fig. 8. Each scenario begins in a 100×100km circular orbit with a de-orbit insertion
(DOI) burn after 1, 2, or 3 orbital revolutions that reduces the spacecraft’s altitude to 15km, where powered descent
initiation (PDI) is assumed to occur. Since DSN tracking primarily affects navigation performance at DOI and PDI,
further stages of descent and landing are not simulated or analyzed in this study. As shown in the trade study matrix
(Table 3), the mission profile is modified to include additional revolutions in orbit around the Moon prior to DOI. In
cases where the TRN system is active, features are detected and processed throughout the entire simulation, whereas
DSN tracking measurements are limited to pre-DOI. Every combination of the variables in Table 3 was explored for a
total of 414 simulations to draw results from. Significant findings are examined in the following section.

Table 3 Trade Study Parameters

Processing Method Trajectory No. Revolutions No. Ground Stations No. TRN Features

Reset, Measurement Polar, Equatorial, Max Vis. 1, 2, 3 0, 1, 2, 3, 6, 9 0, 500, 1000, 1500

The ground stations were set to measure range and range rate at an interval of 100 seconds between measurements. If
the vehicle was eclipsed by the moon, the batch of measurements would resume when the spacecraft line-of-sight was
restored. For each scenario, the DSN uplink was provided to the spacecraft one minute before DOI. Before examining
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Fig. 8 DSN Trade Study Orbits and Representative Results

results, it is pertinent to understand the visibility pattern of the selected ground stations. Figure 9 shows an example of
the time history of ground station contact with the spacecraft in the initial 100×100km orbit for 24 hours. Only seven
unique tracking facilities were identified with overlapping visibility, so additional sites were activated at DSN Goldstone
and Madrid to reach a total of nine ground stations. The ground stations are shown in the order (from top to bottom)
that they were selected for use in trade studies – e.g., if three ground stations were activated, then stations in Fairbanks,
Goldstone, and White Sands would be available for tracking.

Fig. 9 Ground Station Visibility for Selected Trajectories

Simulation results were obtained for navigation performance at both DOI and PDI for DSN and TRN systems as
shown in Fig. 8. The results for DSN-only simulations were computed using the reset method, whereas the DSN and
TRN combination runs necessitated the use of the measurement update method. Using the reset method in the latter
case would fail to take into account the information provided by the TRN system when uplinking DSN measurement
information to the spacecraft – for this reason, the resulting information from the external DSN filter was treated as a
measurement to be processed by the onboard filter alongside any relative navigation measurements.

VI. Results
Selected results will be analyzed here with emphasis on the single-revolution scenarios, as additional revolutions in

orbit did not definitively improve navigation performance. The one revolution results for Maximum Visibility, Polar,
and Equatorial orbits are shown in Figs. 10, 11, and 12 respectively. The general trend in each figure is consistent -
additional ground stations enhance navigation performance but with marginal return for each ground station beyond
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3. A sample of the DSN-only performance for each trajectory is provided in Table 4 to highlight the consistent 30%
decrease in position error when increasing the number of active ground stations from 3 to 9. Also consistent throughout
the results is the performance improvement due to synergy with TRN measurements. It can be seen graphically that
when using a TRN in conjunction with ground tracking, the decrease in position and velocity error is similar to that of
utilizing an additional ground station; however, the equatorial case highlights the dependence of TRN performance on
environmental conditions by showing the lowest position error at DOI, but the highest position error at PDI for TRN
cases. Also shown in Table 4 is the TRN performance at DOI, further indicating that the equatorial trajectory allowed
the vehicle to encounter more features at this specific mission time.

Fig. 10 Max Visibility Trajectory, Single Orbit Navigation Error at DOI and PDI

Fig. 11 Polar Trajectory, Single Orbit Navigation Error at DOI and PDI
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Fig. 12 Equatorial Trajectory, Single Orbit Navigation Error at DOI and PDI

Table 4 DSN and TRN Standalone Performance, One Orbit Revolution

DSN-only at DOI

3 Ground Stations 9 Ground Stations

3σ Pos Error (m) 3σ Vel Error (m/s) 3σ Pos Error (m) 3σ Vel Error (m/s)

Max Visibility 85.2 0.04 60.3 0.03

Polar 78.2 0.03 51.8 0.02

Equatorial 74.8 0.03 50.3 0.02

TRN-only with 1500 Feature Database

DOI PDI

3σ Pos Error (m) 3σ Vel Error (m/s) 3σ Pos Error (m) 3σ Vel Error (m/s)

Max Visibility 547.2 0.48 499.7 0.48

Polar 494.0 0.44 210.9 0.23

Equatorial 166.5 0.17 1125.6 1.01

VII. Conclusion
This paper outlined the development of a novel ground-based radiometric tracking sensor model for use in linear

covariance analysis in support of NASA’s Safe and Precise Landing – Integrated Capabilities Evolution project. Linear
covariance analysis provides an agile method for evaluating the performance of a GN&C system, and the addition
of a radiometric tracking model advances the capability of this powerful tool to investigate sensor suites and define
requirements for descent and landing missions. The relevance of this contribution is underscored by the numerous
near-term Lunar missions currently evaluating the necessity of Deep Space Network measurements for a successful
lunar landing. Additionally, this sensor model allows for comparative analysis with proposed alternatives, such as terrain
relative navigation.
This radiometric tracking model takes into account uncertainties that affect range and range rate measurements as

well as spacecraft attitude dynamics to accurately capture the performance of ground-based tracking systems. This
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study highlights the significant nuance present in determining the trajectory and timing that achieve the best radiometric
tracking performance. Although this study is best treated as an informative exercise that highlights the general trends
associated with radiometric and terrain-relative navigation methods, the following conclusions can be drawn from
simulation data: (1) At least three geometrically-diverse ground stations are required to achieve high accuracy (<100
m position error) with radiometric tracking alone. (2) The tracking measurement problem is geometrically driven
and highly dependent on the relative orientation and motion of the spacecraft and ground stations. (3) Additional
revolutions in orbit (i.e. additional tracking passes) do not always improve navigation precision. (4) A TRN system
most significantly augments navigation performance when few (n<3) ground stations are available. There is significant
challenge in determining the integrated performance of a GN&C system. As such, the development of novel simulation
tools such as this DSN model in an agile linear covariance framework will expedite analysis into the capabilities and
limitations of human landing systems for near-term space missions.

Appendix A: H-Matrix Partial Derivatives
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